
JOURNAL OF COMPUTATIONAL PHYSICS 54, 221-236 (1984) 

Numerical Solution of a System of lntegrodifferential 
Equations Arising from the Quantum Mechanical 
Three-Body Problem with Coulomb Interaction 

V. S. MELEZHIK, I. V. PUZYNIN, T. P. PUZYNINA, AND L. N. SOMOV 

Joint Institute for Nuclear Research, Dubna, Moscow, U.S.S.R 

Received August 28, 1980; revised September 23, 1983 

Two iterative schemes are proposed for numerically solving an eigenvalue problem for a 
large system of integrodifferential equations arising from the three-body problem with 
Coulomb interaction in quantum mechanics. The iterative corrections are determined by 
solving a set of well-conditioned boundary problems for a system of differential equations. 

1. INTRODUCTION 

The quantum mechanical three-body problem with Coulomb interaction has a 
number of important physical applications. For instance, this system is used as a 
model for the description of p-atomic and p-mesic molecular processes in hydrogen 
isotope mixtures [ 1,2]. 

The values of the total energy E,, and the wave functions Y(r, R) of different states 
) nr) of p-mesic molecules are found from the Schriidinger equation in six-dimensional 
space (r, R) [3-51, 

(H - E,,) y,,(r, R) = 0. (1.1) 
Here R is the vector connecting the nuclei of mesic molecules a and b with the 
masses M, and M, (M, > Mb) and r is the vector connecting the midpoint of R and 
,K--meson with the mass mu. The quantities ra and rb are the distances from nuclei a 
and b to the p--meson. Quantum numbers it and r specify the motion of the ,K- 
meson (n) in a mesic molecule and the relative motion of nuclei (r). We shall 
consider the energy levels of mesic molecules that correspond to the ground state 
IZ = 0. For such states with n = 0 and a given parity, the wave function depends only 
on quantum numbers t = (J, 0), where J and 0 are the rotation and vibration quantum 
numbers, respectively. In the units e = h = 1 the operator fi has the form 
fi=fO+&,+l/R, 

K V,++VJ’+ (T)2,4], 
j+LA,-L-L 

2m, ra rb ’ 
fvf-’ = M,’ + A!q, 

m;’ =m;‘+M;‘, Mb--M, 

K= Mb+Ma’ 
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At present there are two well-known methods for the numerical solution of 
Eq. (l.l), namely, variational 14, 51 and adiabatic [3]. 

Variational calculations have been used to obtain values of the binding energy of 
the ground state and of some excited states of p-mesic molecules. These calculations 
are cumbersome and are not always effective in determining the energy levels of 
weakly bound excited states, unless a proper choice of basic functions is made. 

New experimental measurements of formation rates of mesic molecules stimulate 
new interest in high accuracy calculations of energy levels and wave functions of 
weakly bound excited states of p-mesic molecules. Based on an assumption about the 
existence of energy levels of weakly bound excited states of mesic molecules, a 
theoretical prediction of resonance dependence of formation rates of mesic molecules 
d& and dt,u [6] on temperature can be made, which is in agreement with experiments 
[7, 81. Although variational calculations were not of much help in computational 
schemes the adiabatic approach allows one to calculate energy levels of all bound 
states ofp-mesic molecules and to determine the weakly bound excited states of mesic 
molecules ddp and dtp. The results obtained are in good agreement with the 
variational calculations when the latter are carried out carefully [9]. Progress in the 
creation of numerical schemes for the solution of Eq. (1.1) utilizing the adiabatic 
method is closely related to the development of effective algorithms for the numerical 
solution of the quantum-mechanical problem of two Coulomb centers [ 10, 111. 

The adiabatic representation of the three-body problem with Coulomb interaction 
is based on the expansion of the wave function Y (r, R) of Eq. (1.1) over the set of 
wave functions of the two-center problem [3, 91, 

y(r, R) = x #j<r; R) Xj(R) + C J #s(rt k R) Xs(k R) dk- (1.3) 
.i s 

Substitution of this expression in Eq. (1.1) and subsequent integrations over the coor- 
dinates of vector r and angular variables of vector R leads to an infinite system of 
integrodifferential equations (m, = 1) [9], 

d2 J(J + 1) - 2m2 
z- R= 

- q + ~ME,, 
I 

&i(R) 

- f’, i,(R) Xi(R) - szl ,(y Gis(k RI Xs(ky RI dk = 03 

d2 .q.r+ l)-22m2 
ZF- RZ 

- F + 2McJo 1 fxSk R 1 
(1.4) 

-f, ;sjCkT R)Xj(R) - ,g, jam u^,,,(k, k’, R)xs,(k’, R) dk’ = 0, 

with the boundary conditions, 

xi(O) = iirn, xi(R) = 0, x&k, 0) = ji”, xs(k, R) = 0, (1.5) -t 
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for the radial wave functions from which the values of binding energy levels can be 
determined. Here m is the magnetic quantum number. 

The system of Eqs. (1.4) is given in the “two-component form,” 

The coeflicients of Eqs. (1.4) represent 2 x 2 dimensional matrices, for instance, 

Cij(R) = ( uiaja(R) Uiajb(R 1 

Uibja(R > ) I(ibjbtR) ’ 

where the components are matrix elements [ 121 for the two Coulomb centers 
problem. Asymptotic properties as R + 0 and R + co have been investigated [ 131, for 
example, as R + 00, ulala(R) --t 0. H ere we consider the general case of M, + Mb. 
For identical nuclei, one can use the one-component notation, since [3], 

Uiaja(R) = Uibjb(R>, Uiajb(R> = Uibja(R) = 0, 

Formulae (1.4), (1.5) can be written symbolically as 

where Dm is the differential operator determined on the semiaxis 0 <R < co, and S” 
is the integral operator on the semiaxis 0 < k < 00, A= -2Mc,,. 

In developing algorithms and programs for the numerical solution of the system 
(1.4), one should take into account the specific properties of the adiabatic represen- 
tation. These characteristics are: 

(i) The effective potentials of the system of Eqs. (1.4) have long-range 
characters, i.e., slowly reach the asymptotes as R + co [ 131. 

(ii) Numerical analysis of the convergence of the expansion (1.3) leads to a 
solution of sequences of finite systems of Eqs. (1.4), a number which can be large. 

(iii) The effective potentials of the system of a finite number of Eqs. (1.4) are 
given as tables for a large number of nodes. 

(iv) The energy levels of weakly bound excited states of mesic molecules are of 
an order of lop3 of the depth of the effective potentials. 

This paper describes two computational Schemes A and B for the solution of the 
local spectral problem for the system (1.4) containing a finite number of equations, 
and analysis of the convergence of expansion (1.3). The schemes depend on the 
neglect of different elements in the potential matrix (1.4). The peculiarities of these 
schemes are demonstrated by the calculation of the energy levels of mesic molecules 
PDF and ddp, both of the ground states and excited states. The spectrum of the mesic 
molecule ddp includes a weakly bound level (J = ,9 = 1) with binding energy of about 
2 eV (the depth of the effective potential well is about 600 eV). 
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2. APPROXIMATION OF THE SINGULAR SPECTRAL PROBLEM (1.4),(1.5) 

Numerical analysis of the convergence of expansion (1.3) is reduced to the solution 
of system (1.4) with boundary conditions (1.5), in which indices i and s take the 
values 1, 2,..., Ni and 1,2,...,iV,, respectively, for different values of (N,,N,}. 
Therefore, for each given pair the singular Sturm-Liouville problem should be solved 
for the system of integrodifferential equations in the range 0 <R < co and 
0 < k < co. An approximate solution can, however, only be obtained in the rectangle 
0 < R < R, , 0 < k < k, . A semidiscrete representation of the problem (1.4), ( 1 S) on 
a chosen net of nodes with respect to k; {k,} is obtained by approximating the 
integrals over k in the system of Eqs. (1.4) by the quadrature formula, l:;f(k) dk -+ 

C:kfW P(k) Ak,- As a result, we get the following system of differential 
equations: 

d2 J(J+ l)- 2m* -- 
dR2 R2 

- y + 2M&,, 
I 

hi(R) 

- all u^ij(R) Xi(R) - ~~, ~~, u^,(k,) R) ‘(k,) Ak,Xs(k,’ R) = 0’ 

d2 J(J+ l)- 2m2 
(2-l) 

ZF- R2 
- y + 2M&,, 

I 
fxstk, > R) 

- 2 asj(k, 9 RI Xi(R) 
j=l _ 

Here Ak, is the node step with respect to k, and P(k,) is the weight of the quadrature 
formula. Simpson’s rule of accuracy O(Akk) has been used in the calculations. In 
matrix notation for brevity the indices (J, 0) will be omitted, 

K -$+2M~)i-o(R+(R)=O, 

where 

ir(R) = 

Here odd(R) is the matrix of the potentials, 

(2.2) 

odd(R) = 
J(J+ l)-2m2 

R2 
+ F 

I 
S,f + S,(R) 
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connecting the discrete spectrum states of the two-center problem, and I?‘(R) and 
pd(R) are the matrices of the potentials connecting the states of the discrete and 
continuous spectra of the two-center problem, 

~dc(R) = ais R) P(k,) Ak, ; IjCd(R) = tisj(k,, R). 

The matrix e(R) connects the states of the continuous spectrum of the two-center 
problem, 

irCe(R) = 
J(J + 1) - 2m* 

R2 

+ti,,,(k,,k:,,R)P(k,)P(k;)Ak,Ak;. 

The boundary conditions (1.5) are replaced by 

x(O) = 0, -$+&,R,) x(R,)=O, 1 
which makes the vector function x(R) bounded for 0 <R < co and allow one to take 
into account the asymptotics of the wave functions, as R --) co. Such a substitution 
also brings in an error in the solution, which can be estimated by comparing the 
solutions for different values of R,. 

3. STATEMENT OF THE PROBLEM 

After these approximations it is necessary to find the solution of the regular 
Sturm-Liouville problem for the system 2N = 2(Ni + Nk x N,) of second-order 
differential equations (2.2) with boundary conditions (2.3) on the interval [0, R,]. 
Note that an error in the solution {E*, 2 * } of the approximate problem (2.2), (2.3) 
depends on the number of equations 2N, the upper limit of integration k,, net step 
with respect to k - Ak, and the boundary point of the interval [0, R,] -R, under 
consideration. 

Consider two computational schemes for the matrices of the coefficients, a special 
form of system (2.2) (see Fig. 1). In the first case the matrix of the potentials odd(R) 
are completely filled, ir”‘(R) and i?d(R) contain just one row, and ir’c(R) just the 
diagonal. In the second case the matrix l?(R) contains the first row, the first column, 
and the diagonal, and all other elements are zero. Each element of o(R) is a 2 X 2 
matrix with dimension 2N x 2N. 

4. THE ITERATION METHOD OF SOLUTION 

Problem (2.2), (2.3) is treated as a nonlinear functional equation, 

P(Z) = 0, q = ((p(l), p, (p(3), g4’), (4.1) 
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n 

Up,lk.RI 

i 

FIGURE 1 

with respect to the pair 2 = (A, x) E R x C’[O, R,], (A = -2M&), where the 
components q”’ are determined as follows: 

(o”‘(/l, x) E 
[ 
-$f- (/Ii+ o(R)) x(R) = 0, 

I 
(4. la) 

fp’2’(A, x) = x(O) = 0, (4.lb) 

c#~‘(A, x) E 
[ 
-$i+ P(l, R,) 

I 
x(R,) = 0. (4. lc) 

The fourth component is the normalization condition of the wave functions x(R), 

$d4’(A, x) f (x, x) - 1 = 0. (4. Id) 
Here 

(x, x) = fI !If” [x;aW + x;dR)l dR. 

Suppose that a simple localized solution of Eq. (4.1) Z = (A*, x*) exists and the 
initial approximation Z, = (A,,, x0) to this solution is known. 

To solve the functional equation q(Z) = 0, apply the continuous analog of 
Newton’s method [ 14-161. For the continuous parameter 0 < t < co the following 
relations are valid: 

rp’(W)) Z’(f) = -PWO)9 Z(0) = z,. (4.2) 

Here 9 is a Frechet derivative of the operator p, and Z’(t) = (A’(t), x’(t)) = 
(u(t), V(t)). This approach is referred to as the invariant imbedding method [ 161. In 
[ 151 it is shown that the smoothness of the operator v, in the vicinity of an unknown 
isolated solution Z* leads to the asymptotic relation 

pix 11z* - z(t)11 = 0. (4.3) 
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The evolution equation (4.2) is solved by the Euler method. The semiaxis 0 < t < co 
is divided by nodes t, (k = 0, l,...) with step rk 

t k+l=tk+7k* 

The process of solving Eq. (4.2) may be considered as the iteration process of solving 
Eq. (4.1). 

At each step number k, (t = tk) the linear problem, 

t(z,) Az, = -dzkh (4.4) 

is solved with respect to the iteration correction AZ, = (L’(t,), f(tk)) = @k, vk) 
under the known approximation Z, to the desired solution. Then a new approx- 
imation Zk+ r = (A,, , , xk+ ,) is found, 

Z k+I=Zk+7kdZk=(Ak+7k~k~~k+7kVkh (4.5) 

if step rk is defined. For tk = 1 we have the Newton method. In the vicinity of the 
desired solution, the method provides a minimum for [ 171, 

Choose rk so that this property is fulfilled at each step. 
The operator p for Eq. (4.1) can be separated into two main components 

where D is the differential operator (4. la) including the boundary conditions (4.1 b) 
and (4.1~). Equation (4.4) with respect to the iteration corrections bk, V,) is the 
system of equations, 

(D - &i)v, - illk& = -(D - &j) Xk, 

2(xk, vk) = ’ - (Xk, Xk)’ 

(4.7) 

The inverse operator [@(Z,)]-’ for this system exists [ 181 and is bounded in the 
vicinity of the solution Z*. To simplify the solution of the system (4.7) let 

v, = -& + pkVk 9 (4.8) 

where vk is the solution of the boundary problem 

(D-il,f)v,=-x,. (4.9a) 
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Solving this problem and substituting an expression for V, (4.8) with an unknown ,LI, 
into the second equation of the system (4.7), produces 

c1 
k 
= l+(Xk~Xk) 

2otk, ‘k) ’ 

(4.9b) 

Formulae (4.9) and (4.5) correspond at rk = 1 to an inverse iteration method [ 191. 
As 3Lk+A*, where 2” is a point of the spectrum of operator D, we are faced with the 
ill-conditioned problem (4.9a). To avoid the construction of special algorithms for its 
solution, consider the well-known modification of the Newton process, 

@(z,)Az, = -dz,>Y (4.10) 

k = 0, l,..., Z, is the given element. Now instead of formulae (4.8), (4.9), we have 

(D - A,f) v,, = -ito, (4.1 la) 

(D - A,f) wk = -(D - n,f) xk, (4.1 lb) 

c1 
k 
= 1 - (&Y &) - 2(xO, wk) 

2(XO~tJ ’ 

(4.1 lc) 

vk=wk+pkvrJ. (4.1 Id) 

The ill-conditioned problem (4.9a) is replaced by $0 boundary problems (4.1 la) 
and (4.1 lb) with a nondegenerate operator (D -&I)-‘. Equation (4.1 la) is solved 
only once on the first step of the iteration process (4.11) at 1, # A*. Computation 
time is drastically reduced particularly. Deceleration of convergence in contrast with 
the classical Newton process (4.8), (4.9) can be compensated by choosing a good 
initial approximation. 

5. SOLUTION OFTHE BOUNDARY PROBLEM FORTHE ITERATION CORRECTION 

The most complicated part in the numerical solution of the iteration process (4.11) 
is due to the boundary problem (4.1 la), (4.1 lb). Consider problem (4.1 la) in a form 
analogous to (2.2). The index k = 0 is omitted, 

(D - @v = --x, (5.1) 

where 

D = 

c 

odd(R) Ddc(R) 
Dcd(R) D”(R) 1 c 

= (d’/dR’) i- odd(R) -irdc(R) 

-ti’(R) (&&) f - w(R) 1 ’ (5*2) 

and O<RcR,. For R = 0 and R = R, the operator is represented by formulae 
(2.3). 
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In solving the given large system of differential equations*, it is advantageous to 
use specific properties of the problem, the vacuity of the matrix of the coefficients of 
the system (5.1) (see Fig. 1); a low-accuracy iteration correction to the sought 
solution v is acceptable. Convergence of the Newton process (4.10) in this case 
requires a relative accuracy of about 10-l [20] when calculating v. 

Consider two computational schemes for solving the equations for the iteration 
corrections. 

Scheme A. The matrix Ddd is completely filled. Use the representation (5.2) for 
the operator D and rewrite Eq. (5.1) in the form 

(Ddd - @ vd = -xd - Ddcve, 

(DC, - @ vc = -f - Dcdvd, 
(5.3) 

where 

v= (I:)? x= ($I). 

To solve Eq. (5.3) use the method of successive approximations. For the first step 
(I = 1) assume vc = 0 and solve the boundary problem 

(Ddd -d) vd = -xd. (5.4) 

Substitute the solution vd in the right-hand side of the second matrix equation of (5.3) 
and solve the boundary problem 

(Dee - iI-) vc = -xc - Dcdvd. (5.5) 

Having found vc repeat the solution of Eqs. (5.4), (5.5) with the right-hand side of the 
first matrix equation (5.3) containing vF=i. 

The iteration process (with respect to I) for solving the problem (5.1) is described 
by the equations, 

(Ddd - lf) v; = -xd - Ddcvf-, , 

(DC’ - Ai) vf = --xc - Dcdv;. 
(5.7a) 

Convergence of the iteration process (5.7a) is investigated numerically. Equation 
(4.1 la) is solved only once at k = 0. An analogous “inner” iteration process is 
constructed at each step of the “outer” Newton process (4.10) and for the solution of 
the boundary problem (4.1 lb). 

Problem (5.4) is solved numerically by the method of finite differences. Approx- 
imation of the operator D with accuracy of order O(h*) (h is the step of the difference 

* It is shown below that to achieve the required accuracy, one should solve a system of about 300 
equations. 



230 MELEZHIK ET AL. 

net) and an alternating implicit matrix algorithm are used [21]. The numerical 
algorithm is easily obtained, since system (5.5) consists of Nk X N, independent 
matrix equations (see Fig. 1) (i = Ni + l,..., N), 

L 
Ni 

v;(R) = --x;(R) + 1 of(R) t+(R). (5.6) 
j 

Scheme B. In matrix D the diagonal, the first row, and first column are assumed 
to be nonzero. 

Numerical investigations show that replacing the matrix of effective potentials 
(2.2) by a matrix of a special type (see Fig. l), 

f-L(R) &2(R) G,(R) *.. WR) 
O*,,(R) O**(R) 0 ... 0 

) (5.8) 

determines eigenvalues which differ slightly from the true eigenvalues of the original 
problem (2.2) [9]. Th is allows one to modify the described computational scheme for 
special matrices (5.8) by treating the problem as a possible adiabatic representation 
of the original problem (1.1). This modification leads to the construction of an 
iteration procedure for solving the boundary problems, 

(01, -@vu= -XI - 5 Dlivi,-l; vi,, = 0; i = 2, 3 ,..., N, 
i=l (5.7b) 

(Dii-Iz~Vi,=-~i-DilvI,, 

that corresponds to the matrix structure (5.8). The numerical procedure of the 
iteration process (5.7b) is analogous to that of (5.7a). The correction ,uk is determined 
numerically by approximating the integrals in formula (4.1 lc) with Simpson’s rule 
using the modes of the difference net. 

6. SOME DETAILS OF THE COMPUTATIONAL PROCEDURE 

The computational schemes under consideration are programmed in FORTRAN 
for a CDC-6500 computer. The programs will calculate energy levels of mesic 
molecules and their wave functions [9] using boundary conditions x(O) = x(R,) = 0. 
Numerical investigations have shown fast convergence of “inner” iteration processes 
(5.7). A relative accuracy of the calculation of the iteration corrections vO, wk - lo-* 
is achieved per two to three iterations with respect to computational Scheme A. The 
convergence of iterations (5.7b) is somewhat slower (I,,, - 3-4). Computational 
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Scheme B is simpler and reduces computational time by a factor of five in contrast 
with Schema A. Convergence of the Newton process (4.11) is checked by the 
decrease in the quantity, 

where D, is the finite-difference approximation of the differential operator D (5.2) 
and i is the number of the node of the difference net. 

In solving the boundary value problems (5.7) by the matrix implicit alternating 
direction method, only three neighboring mesh points Ri - h, Ri, Pi + h [ 211 are 
required. This minimizes computer storage containing potentials U(R,) with only 
three neighbouring nodes of the difference network in R being required while other 
values are stored on tape. This structure makes it possible to increase the number of 
mesh points without increasing the computer storage size occupied by the routine. 

In Table I some quantities characterising the convergence of the computational 
scheme (4.11) are presented. The Newton process converges in three to live iterations. 
The time of one iteration by Scheme B -2 min, the number of equations to be solved 
-300, and the number of mesh points -300. An initial condition for the iterations 
uses the “two-level approximation” of the adiabatic representation (two equations in 
the system (2.2)) [22]. Step rk in the initial approximation is determined from the 
condition of minimum of the quantity (6.1) allowing extended range of convergence 
of the method. With increasing N put t equal to 1 (Newton method). 

Briefly, consider errors in the numerical solution of (1.6), where the matrix 
structure of coefficients of the system (1.4) is given. Errors, both of the approx- 
imation (see Introduction) and of the numerical solution of Eqs. (2.2), (2.3), are 
included. 

If the difference nodes for Eqs. (4.1 la)-(4.1 lc) are fixed, the iteration process 

TABLE I 

Convergence of the Computer Scheme 

Mesic Molecule k 4 -C&V) 

d4 0 0.48 2.50 .0.880X 10-I 
J=8= 1 5 0.14 x 1o-6 1.91 0.671 x lo-* 

PC 0 0.18 225.00 0.52826 
J=B=O 3 0.4 x lo-’ 221.52 0.52010 

Nom. 
(6.1), $0 

Here k is the iteration number of the computational process, 6, is determined by formula 
is the level of energy of the mesic molecule on the kth step, Ik = -2Me$, is the eigenvalue in 

the units of the problem (m, = R = e = 1). The calculations are performed by the Scheme B at x(O) = 
x(R,,,) = 0, R, = 60, N = 84 for pdp, and N = 13 1 for ddp. As the wave functions of the initial approx- 
imation (k = 0) we have used the wave functions which have been obtained while solving the first two 
equations (one equation for ddp) in the system (2.2). 



232 MELEZHIK ET AL. 

(4.1 l), (4.5) in the vicinity of a sought solution at r/, = 1 can be considered as a 
modified Newton method for solving the nonlinear system of algebraic equations, 

%(Zh) = 
( 

DhXh -&IX/l = o 
) 6h~XJ-l ’ 

z/i = PhY Xhl, 

approximating Eqs. (2.2), (2.3) with accuracy of order 0(/z’). That system (6.2) has 
a solution for the Hermitian operator with boundary condition (4.1~) which is A- 
independent, follows from [23]. How accurately the problem (6.2) is solved by the 
modified Newton method can be seen from the estimate achieved in the course of 
iterations of the quantity SK (6.1), where K is the number of iterations and (xhK, 
xnK) = 1. For the convergence of iterations the estimate [ 181, 

II-G - ZhKII G Cl 43 (6.3) 

is valid, where Z,* is a solution of Eq. (6.2). According to [ 141 the eigenvalue A,* 
satisfies 

where c,, c2 = const. > 0. 
For the chosen difference scheme with approximation order O(h*) convergence of 

the difference solution {A,*, xz} to solution {A*, x*} of Eqs. (2.2), (2.3) is quadratic 
in h [24], i.e., 

Therefore, 

llz* - z,* I/ < c,h2, c3 = const. > 0. (6.5) 

11” -&l,I + 11x* -X/d = IIZ” -Z/Al < cd4c + h2)7 c, > 0. (6.6) 

For SK < h*, the main error is generated by the difference approximation. 
A contribution to the error of the approximation of Eq. (1.6) comes from the error 

a(K,) caused by replacing the infinite integration interval k E [0, co) by the finite 
one, the operator [D”O + Sm] by [Dm + Skm], and also from the error of order 
O(Ak4) originating from the approximation of operator Skm by Simpson’s rule. In [9] 
a numerical analysis of the error o(K,) and the choice of the step Ak of quadrature 
formulae is described. It is also necessary to take into account the error a@,) due to 
the change of the boundary conditions (1.5) to (2.3). It is known [25] that for the 
change of DOD to DRm, as R, + co we have the convergence of solutions of regular 
problems (4.1), however, the rate of convergence is determined by operator properties 
D”O. This analysis is a difficult problem. Therefore, the dependence of the error on R, 
is analysed numerically. The boundary point R, is chosen from the dependence 
E = &(R,) obtained numerically. As follows from Table II, to calculate energy levels 
of mesic molecules with an accuracy of 0.1 eV, it is sufficient to put R, = 20. Note 
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TABLE II 

Dependence of the Energy Level---E,, on R, 

R, 

20 

40 

60 

PC d& 
J=8=0 J=t’= 1 

221.516 1.393 

221.520 1.908 

221.520 1.906 

Note. The ~~~ are given in eV and R, in the 
units of the problem. The energy levels are 
calculated for N = 84 for the pdp mesic molecule 
and N = 131 for ddp. The calculation has been 
performed by Scheme B for x(O) = x(R,) = 0. 

strong dependence of E on R, for the weakly bound state J= 19 = 1 of a mesic 
molecule ddp. 

The approximation parameters for the initial problem h, Ak, R,, k, are determined 
so that the absolute error in the value of an energy level does not exceed 0.1 eV 191. 
From the same considerations the quantity (6.1) was estimated (6, < E = 10m6). 

7. NUMERICAL ANALYSIS OF THE CONVERGENCE 
OF THE ADIABATIC EXPANSION 

Convergence of expansion (1.3) is analysed by the numerical solution of the 
sequence of problems (2.2), (2.3) for different N at h, Ak, R,, k, chosen by 
Scheme B. In Table III the dependence of the mesomolecule binding energies on the 
number of solved equations of the system (2.2) is given, i.e., on the number of states 
of the two-center problem considered in the expansion (1.3). The contribution of 
discrete and continuous spectra of the two-center problem into the binding energy is 
taken into account for given N with an accuracy of 0.1 eV. The calculation was 
carried out by Scheme B, since the problem (2.2), (2.3) with the potential matrix 
(5.8) approximated the initial problem with a high absolute accuracy -lo-* eV, as 
follows from Table IV. Note that the results obtained agree with results of [9], where 
the convergence of expansion (1.3) was investigated by perturbative formulae [26]. 
The authors present values of energy levels of all mesic molecules and compare 
adiabatic and variational [4,5] calculations. 

The above method allows for the contribution in the energy level sJB from omitted 
states of the discrete (N, co) spectrum and from low-lying states of the continuous 
[0, k,], one of the two-center problems [27]. Values do not exceed -0.1 eV for deep 
and -0.05 eV for weakly bound states. 
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TABLE Ill 

Dependence of the Energy Level sJB on the Number of Equations Solved N 

Number of pdp(J=B=O) Number ddfi(J=B= I) 
Pairs of of 

Equations N -I+ de, = E,~ - E,,,,_, Equations -E,, As,. = c2. - E,,-, 

States of the 1 215.680 
discrete spectrum 3 218.598 
of the two- 6 219.114 
center problem 9 219.302 

States of 
continuous 
spectrum 
of the 
two-center 
problem 

21 220.140 
49 221.227 
71 221.441 
84 221.520 

1 

2.918 4 
0.516 8 
0.188 12 

0.838 30 
1.087 52 
0.260 74 
0.033 87 

109 
131 

0.640 
1.392 
1.522 
1.562 

0.752 
0.130 
0.040 

1.678 0.117 
1.769 0.090 
1.812 0.043 
1.824 0.012 
1.881 0.057 
1.906 0.025 

Note. The values of E,,, are given in eV for a different number of equations in the system (2.2). N 
corresponds to a successive tilling of states three shells n = n, + n2 + m + 1, and partially in the fourth 
shell n = 4 (the states n = [n,nzm] = 13001, 12101, [ 1201) of the discrete spectrum, and in six shells of 
the continuous spectrum [nlm] = 1001, [lo], [20], [30], [61], [ 111 of the two-center problem. N differs 
for J = 0 and 0 = 1, since at J = 1 the eigenvalue is contributed by the matrix elements oij(R) (i, j = 
1 $t’,$, ]) with m = 1. The calculation has been performed for the zero boundary conditions x(O) = 
x(R,) = 0 at R, = 60 by Scheme B. 

TABLE IV 

Energy Levels &JB of Mesic Molecules pdp and ddp 

Mesic 
Molecules 

Quantum Numbers 

J e 

Binding Energy -.sJB (eV) 

Scheme A Scheme B 

d& 0 0 325.046 325.043 
0 1 35.808 35.813 
1 0 226.605 226.607 
1 1 1.392 1.393" 
2 0 86.314 86.324 

pd. 0 0 221.515 221.516 
1 0 91.351 97.399 

Note. For the calculations we have used the following values of particle masses (in the units of 
electron mass) and the value of Ry [29]: m,=206.769, MD= 1836.152, Md= 3670.481, 
Ry = 13.6058 eV. The e,s are presented with three numbers after the decimal in order to compare 
Schemes A and B though the absolute accuracy of calculations is about 0.1 eV and for a weakly coupled 
level ddp (J = B = 1) is about 0.05 eV. The calculation has been performed for Z(O) = x(R,) = 0, 
R,=20, N=84 forpdp, and N= 131 for ddp. 

“At R,=60, E,,=-1.906eV. 
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CONCLUSION 

Numerical methods for solving a local Sturm-Liouville problem for a system of 
integrodifferential equations are presented. These methods calculate energy levels and 
wave functions of p-mesic molecules of hydrogen isotopes in the adiabatic represen- 
tation. 

The absolute accuracy of the calculation of energy levels is about 0.1 eV and can 
be increased when the system of equations is extended by choosing R, and k, and by 
increasing the accuracy of the finite-difference scheme. Possible ways to increase 
accuracy are also suggested [28]. 
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